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A ~THOD OF STATISTICAL MODELING TO ESTIMATE THE ERROR 

IN DETERMINING THE COEFFICIENT OF ~ISTURE DIFFUSION 

N. I. Gamayunov, R. A. Ispiryan, 
and A. A. Sheinman 

UDC 536.2.083 

A method is considered which connects errors in the measurement of moisture 
content with the determination of the diffusion coefficient. 

The majority of known methods of experimental determination of the coefficient of mois- 
ture diffusion require, during their practical implementation, creation in test special con- 
ditions such as, e.g., constant moisture content or flux of moisture on the surface, semi- 
finiteness of the medium, and uniformity of the initial distribution. In addition, as is 
mentioned in [1,2], during the solution of inverse problems insufficient attention is de- 
voted to the error estimate. Often, incorrectly, the errors of direct and inverse problems 
are taken as identical. 

Since existing methods of measurement of moisture fields give large errors, there arises 
need to work out methods of analysis of experimental data. 

The essence of the method being proposed here consists of the following. Let there 
exist a testpiece of the material in which, as a result of external action, there is created 
a one-dimensional isothermal process of moisture transfer. We assume that at two points 
with the coordinates x = 0 and x = I we know the dependence of moisture content on time u(0, 
T) = f1(T) and u(l, T) = f2(T), and also the distribution u(x, 0) = g(x), referred to a time 
instant which conditionally is taken as the zero instant. 

Usually in a real process the diffusion coefficient varies with time as a consequence 
of variation of the structure of the material. However, if we choose small time intervals 
and a thin layer I of the testpiece, then the moisture diffusion coefficient a within this 
layer can be considered as constant. 
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With the assumptions just made taken into account, the process of moisture transfer 
within a thin layer of the testpiece for each time interval will be analogous to the process 
of transfer in an infinite plate of thickness 1 with boundary conditions of the first kind: 

au (x, T) ~ u  (x, T) 
= a , u (x, O~ = g ~x), 

o~ ax 2 

u(O, x ) =  [, ~),  u(l ,  ~ = h(~" 

Let at the point x = ~/2 there be also known the dependence of moisture content on 
time u(I/2, T) = fm(T). Then, using the Laplace transform, we find the solution of the 
problem thus formulated in terms of transforms, and then we stipulate that it would be satis- 
fied at the point x = 1/2. As a result, we obtain the equation 

I f , (s)+L(s) l -Iv(o,  s, a ) to (Z ,  s, a)l +v(l/2, s, a ) - ~ ( s ) =  0. (1) 
2ch (l V-s~/2) 

where f x ( s ) ,  f 2 ( s )  and f 3 ( s )  a r e  t he  t r a n s f o r m s  o f  t he  bounda ry  c o n d i t i o n s  and the  a u x i l i a r y  
function, respectively; v(x, s, a) is the particular solution of the differential equation 
undergoing Laplace transformation; it is chosen in accordance with the form of the initial distri- 
bution. 

For the majority of practical problems, the initial moisture distribution can be approx- 
imated by the parabolic relation 

g(x)  = ~ + 6ix + a2~. (2) 

Then t h e  p a r t i c u l a r  s o l u t i o n ,  which i s  chosen  by the  method of  u n d e t e r m i n e d  c o e f f i c i e n t s ,  
has  the  form 

l 
v(x ,  s, a ) =  [26.zals + g (~] .  (3) 

$ 

With relations (2) and (3) taken into account, Eq. (I) is transformed into 

where 

8~1 ~ (oh ? - -  1) + ~s  [A (s) - -  2B (s) ch ~'1 = 0, (4) 

A (s) = ~ (~ + ~ (s) - -  [g (0) + g (01/s; (5) 

B (s) : ~ (s) - -  g (ll2)/s; (6) 

v = (t/2) sv%~. (7) 

The diffusion coefficient a can be determined directly from Eq. (4), without bringing 
it into the domain of transforms, but solving for a certain real positive value of the 
Laplace transform parameter s = So. 

~hen choosing so it is necessary to proceed from the following. In the process of the 
experiment we obtain the relations fi(~) (i = |, 2, 3) for finite time instants. Therefore, 
replacement of the infinite limit of integration by a finite one in the Laplace transform 
leads to an error whose magnitude will depend on the parameter So. An analysis showed that 
the choice of the quantity so from the condition so ~ 10/Tm, where T m is the value of the 
time interval, leads to negligibly small errors. 

Thus, as is seen from expression (4), for the determination of the diffusion coeffi- 
cient of moisture in the course of the experiment it is necessary to determine the time 
dependence of moisture content for three sections of the testpiece, two of which (the bound- 
ary sections) stand at equal distance from the third (the middle one). As an analysis of 
the experimental data shows, for monotonic processes of mass transfer the variation of mois- 
ture content with time is well approximated by parabolic relations. Having divided the 
entire time of observation into a series of small intervals, we smooth the data thus ob- 
tained in each interval by polynomials of the second degree [3]: 

h (~) == P~o + P.~  + Pt2~ 2, i = I, 2, 3. (8) 

Then p a r a m e t e r s  A(s) and B(s)  a re  found from e x p r e s s i o n s  (5) and (6 ) :  

A (~ = ~to/S § ~u/G § 2 ~ / ~  + ~o/S § ~ , / ~  § 2~=I# - -  (280 § 8~l § 8~l~ls, 

B (s) = [~o/S § [3~t/s 2 + 2~, ls  ~ - -  (60 § 6tl/2 § ghl2/4)/s. 

(9) 

( i0 )  
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TABLE I. Dependence of Moisture Diffusion Coefficient on 
Hoisture Content for Sand 

Rar~e Of variat ion of - 
moisture content &u, 2,6~9,0 2,6--4,5 4,5~6,0 6,0--7,5 7,5~9,0 % 

Diffusion coeff, and 
confidence interval 

(~_---/-3a (a)). 10', m~/see 
,163--I-0,114 0,745 q-0,096 0,905~0,102 1,421___0) 19~ 

1,469+ 
O, 175- 

Equation (4) is functional, although implicit relative to the sought coefficient. How- 
ever, such an equation is of statistical interest, since parameters A(s) and B(s) entering 
into it depend on the error of measurement of the field. 

Let this error have a normal distribution with zero mathematical expectation and the 
variance o~(~), i.e., 

~,-- N(0, (~(~)). (11) 

Here the residual variance is determined for each of parabolas (8) by the relation 

S~ = [ Z ( u , l - - b , o - - b ,  vc~--bi=*~)a]/(n--3), i =  1, 2,3, (12) 
i=1 

where  u i j  i s  t he  v a l u e  of  m o i s t u r e  c o n t e n t  f o r  t h e  i - t h  c o o r d i n a t e  p o i n t  a t  the  j - t h  t ime 
i n s t a n t ;  b i k  (k = O, 1, 2 ) ,  e s t i m a t e s  of  c o e f f i c i e n t s  of  t he  i - t h  p a r a b o l a ;  ~ j ,  v a l u e  o f  t h e  
j - t h  t ime i n s t a n t ;  n, number o f  t ime i n s t a n t s  a t  which  measurement s  have  been  c a r r i e d  o u t .  

= 
The quantity S i is the estimate of the variance of error ~=(e). 

With (11) taken into account, each of the coefficients Bik entering into (9) and (10) 
has a normal distribution with an estimate of the mathematical expectation bik and an esti- 
mate of the variance o=(~ik)' Then, according to [4], the parameters A(so) and B(so) also 
have a normal distribution, i.e., 

A (so) ~" N (m A, ~r~ (A)), B (So) ,-~ N (m e, o z (B)), ( t 3) 

where mA, mB, ~a(A), ~a(B) are the corresponding mathematical expectations and variances. 
Since the coefficients of the parabolas are correlated with one another, the quantities 
o~(A) and on(B) are computed with covariances taken into account. At the same time, we 
assume that the coefficients of different parabolas are not connected with one another. 
Then 

b~i 2bt~ q_ b2o b21 2b=. I 
ma _ bio -k  s o -  "q- - -  q -  - - -  q -  - - - - =  - -  - -  (26o q -  8 i l  q-  621~), ( 1 4 )  

o2 (A) = (r" (Ih0) + ~" (1~.) + 4 ~  (18~) + o" (I8~0) + ~'~ (l~,i) + 4o2 (1~=) + 

q-- 2 [cov (131o, ~u) q- 2coy (~lo, 13t~) + 2coy ~13it, 13=)1 q- 2 [coy (1~o, 1~t) q-- 2r (flzo, 13~) + 2coy (IL.i, ~2)1, ( 1 5) 

r n . =  bap_[_ bat 2ba~ 1 (6o_t 1 1 ) 
So s - T +  s--~o - -  ----~o --~- 8,t + ---4-- ~zt~ , (16) 

02 (B) = ~2 (~a0) + ~2 030 + 4 ~z (~3=) + 2 [cov (~3o, ~si) + 2coy (~o, Pa~) + 2coy @si, ~a~)]. ( 17) 

In relations (15) and (17) the fact that 60, 8~ and 82 are deterministic and have zero vari- 
ance is taken into account. 

Thus, as a result of processing of the data of the experiment we have obtained relations 
for statistical modeling, which are implemented as follows. By means of a transducer of ran- 
dom numbers (TI~) distributed according to a normal law, we generate a sequence {z~]! I~=l, 2 .... ), 
this sequence being a normed sequence [5]. 

In the case being considered it is necessary to obtain two sequences of normally distri- 
buted random numbers having parameters mA, oi(A) and mB, on(B). This is achieved by re- 
peated recourse to the TRN and subsequent transformation of "the normed random quantities 
zljl and z~2: 
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TABLE 2. Experimentally Obtained Dependence of Moisture Con- 
tent on Time for Three Sections of Specimen 

Section ~t=o T~4 xs=s x,=l 2 ~--I s xo,~2 o x,~24 x,--2s 

x=0 
l 
2 

x = l  

11,203 

9,010 

6,293 

9,561 

8,840 

6,708 

8,677 

5,610 

4,458 

6,792 

6,086 

3,612 

6,252 

4,879 

3,459 

4,482 

4,689 

2,397 

5,086 

3,519 

2,690 

3,987 

2,514 

2,793 

A~ = mA + z. ta (A), (18) 

B~ = m B + z~2c (B), (19)  

where A~ and B~ are the ~-th realizations of the random parameters A(so), B(so); z~1 and z~2 
are the ~-th realizations of the normed random quantity as a result of the first and second 
address to the TRN, respectively. We note that repeated addressing of the TRN is carried 
out in order to avoid correlation between A(so) and B(so). 

After obtaining a pair of A~ and B~ we solve Eq. (4); as a result, we find the value of 
y~ and, consequently, a~ in the ~-th realization. Having repeated modeling M times, we ob- 
tain a selection of the coefficient a from which we can find the estimate of the mean a and 
the variance o2(a). Here the law of distribution of the sought coefficient will differ from 
a normal law, since Eq. (4) is nonlinear. The number of realizations M is determined from 
the absolute value of the maximum deviation from the mean [6]. 

Since the estimate of the error of measurement of the moisture content is given by ex- 
pression (12), we consequently obtain a statistical connection between the input and~output 
errors. At the same time, according to the Chebyshev inequality [6],in the interval a • 
at least 89.9%of coefficients thus obtained are located. 

To verify the method proposed, tests were carried out on isothermal drying of sand with 
particle size from 0.25"10 -3 to 0.5"10 -3 m at 348~ Drying was carried out in columns of 
length 0.15 m and diameter 0.02 m. Measurement of moisture content was carried out by the 
weight method. 

As a result of processing of experimental data, we obtained the diffusion coefficients 
and the confidence intervals for various moisture contents presented in Table I. The value 
of the parameter s for each interval of time was taken equal to unity, since the length of 
each of them was not less than 12 h. 

To clarify the method being proposed, we present an example of processing of experimen- 
tal data in a range of moisture content from 2.6 to 9.0%. The duration of the experiment 
was 28 h, the thickness of the layer of specimen was 0.02 m, measurements were carried out 
after each 4 h. The experimental data are presented in Table 2. 

We first estimate the coefficients of the parabolas approximating experimental data, 
variances of the coefficients, andcovariances. For this we use the matrix form of the least- 
squares method, and represent the following quantities, e.g., for the coordinate x = 0: the 
vector of observations 

Ut = (11,203; 9.561; 8.667; 6,792; 6,252; 4.482; 5.086; 3.98~ T , 

the given matrix of time instants at which observations where T is the transposition sign; 
were carried out: 

and finally, the transposed matrix 

I I 0 0 

@= I1 4 16 

I 
1 8 64 
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TABLE 3. Dependence of the Coefficient of Thermal Diffusivity 
on Temperature for a Biomass (solution of albumen in sodium 
sulphocyanate with concentration 18%) 

Range of temp. varia- 
tion, ~ 263--273 273--293 293--313 313--333 

Coeff. of thermal diffu- 
sivity and confidence 
interval, • rr~/sec 2,562___0,213 2,788+__0,246 3,113__.0,294 3,425~0,336 

! 1 1 ... l) 
@T = 4 8 28 . 

16 64 784 

Multiplication of e T by @ gives the square matrix 

8 112 2240  
O T 0 = 112 2240 50176 ~ .  

\2240 50176 1197056 / 

The system of equations for determining the vector of estimates of the coefficients 
has the form 

(OTO)bi =OTUi, 

where bl = (blo, b1~, b~2) T is the vector of estimates of the coefficients. Hence 

b i = ( O ~ O ) - i O ~ U i = Y O ~ U l ,  

where Y is the information matrix. 

Inversion of the matrix OTe by the Jordan method gave 

0,708 --0,938. I0 -i  0.260. I0-2~ 
Y = --0,938.10 -i  0.197.10 -2 --0.651.10 -s / �9 

0,260.10 -2 --0,651.10 -a 0.233.10 - t /  

Multiplying Y by 0 T, and then by Uz, we obtain bl ~ (11.266; --0.426; 0.006) ~ . 

Next by means of expression (12), with i = ! and n = 8, we find the estimate of the residual 
variance S~ = 0.220. 

To determine the covariance matrix we have to multiply all elements of the matrix Y bY 
the value of residual variance S~. Then 

/ 0.156 --0.206.10 -i 0.572.10 -3 \ 
/ 

Z = [--0.206.10 - t  0.432.10 -a --0.143.10 -3 ]-  
| 

\ 0.572.10 -3 --0.143. I0 -z 0.511 10 - a )  

The elements of the principal diagonal constitute the estimate of variances of the coeffi- 
cients of the parabola, while the elements above the diagonal constitute the estimate of 
covariances [3], i.e., o2(~zo) = 0.156, ~2(B11) = 0.432"10 -2, o2(~z2) = 0.511"10 -s, cov(B1o, 
B~) =--0.206"10 -~, cov(B~, B~) = 0.572"I0 -s, cov(B~o, B~2) =-0.143"I0 -s. 

Analogously, we can carry out calculations for the points x = Z/2 and x = I. The ini- 
tial distribution is approximated by the relation (2) and has the form g(x) = I0.45 -- 0.98- 
x -- 0.52 x =. 

For statistical modeling we calculate according to the expressions (14)-(17) the mathe- 
matical expectations and variances of the parameters A(s) and B(s). Here we put so = l, 
since Tm = 28 h. As a result, 

A(1) ,- ,N(0.560; 0.317), B ( 1 ) , v  N(--0.131;  0.30~. 

The statistical modeling was carried out on an M-222 computer by means of a standard 
program for obtaining normed normally distributed numbers. Equation (4) was solved on the 
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computer for each realization by means of dichotomy [7]. Here the H-th realization of the 
parameters A(so) and B(so) was calculated according to expressions (18) and (19). 

In the role of the maximum deviation from the mean value, we took the quantity ~ = 
0.005 at the 5% significance level. As a result of modeling, the absolute value of the max- 
imum deviation became less than ~ for M = 59. By sampling from 59 values of the diffusion 
coefficient a we find the estimate of the mean value a = 1.163.10 -s m2/sec and the mean- 
square deviation o(a) = 0.038"I0 -s m2/sec. Thus, in the interval a = (1.163 • 0.114)'10 -8 
m2/sec there are at least 89.9% of all coefficients. 

Concluding, we note that the method presented above can be applied for experimental de- 
termination of the coefficient of thermal diffusivity, since the mathematical models describ- 
ing the processes of heat and mass transfer are identical. In particular, we determined the 
coefficients of thermal diffusivity of biomasses used in the production of synthetic fibers. 
The results of one of the experiments are presented in Table 3. 

NOTATION 

u, moisture content, %; l, thickness of specimen layer, m; a, diffusion coefficient, 
m2/sec; r error of measurement of moisture content. 

1. 

. 

. 

4. 
5. 

. 

7. 
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